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SUMMARY 

The application of the finite-element method to the simulation of meteorological fluid flow problems is 
reviewed. Early studies were aimed primarily at demonstrating the viability of the method for one- and 
two-dimensional flows, whereas more recent studies have been aimed at demonstrating the efficiency 
and viability of the method for more complex three-dimensional simulations. There has also been a 
shift towards exploiting such models to better understand and predict the underlying meteorological 
phenomena, rather than restricting attention to the development of the algorithms. 
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INTRODUCTION 

It is now ten years since the first journal article appeared on the application of the 
finite-element (FE) method to meteorologically-oriented fluid flow simulations. Although 
there are several articles of a general nature on this none is both complete and 
up-to-date. The present article is an attempt to review these first ten years of progress and is 
arranged by area of application and within areas, in chronological order. The author has 
arbitrarily limited himself to reviewing articles whose prime application is to meteorological 
simulations; articles in allied fields such as free surface flows and convection problems were 
deemed to be worthy of separate reviews (by someone else). References to reports, theses and 
conference proceedings have only been included where the material is not available in a 
journal article. 

BAROTROPIC MODELS 

The first application of the FE method to a meteorological flow was that of Wang et aL5 
They used cubic Hermite functions with a uniform periodic spacing in x to solve the pair of 
one-dimensional (l-D) gravity wave equations 

u, + u y  + gh, = 0 
h, + uh, + hux = 0 

where u is the fluid velocity in the x direction, h is the depth of the fluid and g is the 
gravitational acceleration; the linearized forms of (1) and (2) were also examined. Several 
methods of time discretization were used, all based on the Crank-Nicolson method. 
Equations (1) and (2) and their linearized forms were integrated and the results compared 
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with those of a 4th-order finite-difference (FD) formulation using the same time- 
discretization methods. It was concluded that for a given accuracy their FE method was 
computationally more efficient than the corresponding FD method, although the program- 
ming was far more complicated for FEs (because of the choice of basis functions and time 
integration scheme). The generalization of their work to 2- and 3-dimensions, as well as to 
non-uniform grids would be complicated and was not attempted. 

Cullen6 used bilinear FEs for the 2-D advection equation 

4 , + u + x + u + y = o  ( 3 )  

and for the free-surface gravity wave equations 

where u and v are the x and y components of velocity, respectively, and 4 is the 
free-surface height. Equation (3) was integrated on a uniform rectangular grid using a 
leap-frog time integration scheme. An FE integration of (3) for the passive advection of a 
cone was compared with corresponding 2nd and 4th order accurate FD integrations. A 
similar comparison was made where the initial conditions were chosen to produce a sharp 
gradient as a simple model of frontogenesis. A linear stability analysis of ( 3 )  showed that the 
FE scheme required a timestep smaller by a factor of 1/J3 than that of the 2nd order 
centered FD scheme. The non-linear equations (4)-(6) were solved on a uniform periodic 
domain with both leap-frog and Runge-Kutta time schemes and results compared with those 
of a 2nd order energy-conserving FD scheme. A linear analysis of the phase truncation 
errors of (4)-(6) was performed for both FD and FE versions and the superiority of the FE 
scheme, particularly for the smaller space scales, was evident. It was concluded from the 
above experiments that the FE schemes outperformed the 2nd order FD schemes and were 
as good as, or better than, 4th order FD methods for equivalent computational cost. The 
conclusions would presumably have been even more f avourable toward the FE method had 
the more efficient direct method described by Staniforth and Mitchell’ been used for solving 
algebraic equations of the form 

M f = r  (7) 
where M is the mass-matrix and f and r are coefficient vectors, rather than the iterative 
method used. The previously mentioned timestep penalty of the FE schemes when compared 
to the 2nd order FD schemes is due to the superior treatment of the shorter space scales; this 
is not surprising, since a similar result holds when comparing 4th order FD schemes to 2nd 
order FD schemes. In fact the FE scheme for the linearized problems is 4th order accurate as 
can be easily seen from an expansion of the phase truncation factor of expression (16) of 
Cullen’s article for small A x ;  i.e. 

+ . . .  ( k A x ) *   AX)^ 
1 -___ +- 
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where k is the wavenumber and A x  is the grid-length. 

= 1 + o ( h x 4 )  (8) -- - 3 sin k A x  
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Cullen' used linear equilateral triangles and a leap-frog time scheme to integrate the 
shallow-water equations 

u, + uu, + uuy ++, -fu = 0 
u, + uu, + uuy + +y 'fu = 0 

4, + ( 4 1 ,  + (~41, = 0  

(9) 
(10) 
(11) 

where u, u and 4 are as before and f is the Coriolis parameter. The equations were solved 
for a periodic channel on a 'betaplane', i.e. 

f = f o +  PY (1 2) 
where fo and are constant. These equations are perhaps more typical of those of interest in 
meteorology than the gravity-wave equations of the previous studies, since they include the 
important effect of rotation and consequently permit non-stationary Rossby waves. Results 
of these FE integrations were compared with those of various 2nd and 4th order FD schemes 
and it was concluded that the FE schemes were superior. It was found however that 
modifying the FE calculation of the non-linear terms by smoothing improved the results, and 
also that the results were very sensitive to how the boundary conditions were imposed; the 
conclusions are therefore not clear-cut and subject to interpretation. 

Cullen', Himman'* and Hinsman and Archer" used linear equilateral triangles defined on 
an icosahedral mesh to solve the shallow-water equations on a sphere for Rossby-Haurwitz 
waves. Cullen' used a leap-frog time scheme whereas Hinsman'' and Hinsman and Archer'l 
used an extrapolated Crank-Nicolson. Cullen' reported noise and computational stability 
problems, particularly near the vertices of the icosahedron and resorted to artificial smooth- 
ing as a control mechanism. The results were not entirely satisfactory, although it was 
concluded that the FE method was reasonably competitive with the spectral and FD 
comparison models. Hinsman" and Hinsman and Archer'' also experienced some stability 
difficulties for their longer-time integrations. 

Motivated by his previous work, Cullen" examined various choices of introducing artificial 
smoothing to control noise in shallow-water equation models, both for FEs and FDs. 
However the most interesting aspect of the article is the analysis of the spatial evolutionary 
error for various schemes; these ideas are further developed by Cullen3 and Cullen and 
Morton.13 It was concluded that the spatial evolutionary error for bilinear elements is O(h4) 
on a uniform rectangular mesh of mesh-length h. This important result explains why linear 
elements (low-order polynomials) on a uniform mesh can compete so successfully with 4th 
order FD methods. It was also concluded that it is more accurate to compute non-linear 
terms involving a derivative by first evaluating the derivative and then computing the 
product, rather than by directly evaluating the product. Higher-order spline bases were also 
examined and again gave more accurate error estimates than would at first glance be 
expected (super-convergence at the nodes). 

Staniforth and Mitchell7 examined the efficiency of the FE method for solving the 
shallow-water equations for a rotating fluid on a polar-stereographic projection of the sphere 
(this introduces the minor complication of map-scale factors; the algorithms may be 
straightforwardly applied to plane geometry by setting the map-scale factors to unity). They 
showed how to implement a semi-implicit time diseretization which is approximately four 
times more efficient than competing methods (such as the leap-frog scheme used by 
C~llen~~'. '),  a significant improvement which can be crucial in real-time, synoptic-scale 
forecasting problems. In so doing, they performed a stability analysis to show that it is 
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advantageous to use vorticity and divergence as predictive variables instead of velocity 
components; this also resulted in a consistent application of the boundary conditions, a 
difficulty previously encountered by Cullen.* A 4th order accurate method was given for the 
solution of the elliptic boundary-value problems, and this and the analysis of C ~ l l e n ~ , ~ ~  and 
Cullen and Morton’3 gives a 4th order estimate for the spatial evolutionary error; this 4th 
order accurate method for approximating the solution of equations having second derivatives 
is essential to raising the spatial evolutionary error from 2nd to 4th order, a point apparently 
overlooked by Cullen (Reference 3, p. 328). The accuracy of their model was demonstrated 
practically using 500 mb data in comparison experiments with 2nd and 4th order FD models, 
and it was concluded that the FE method was indeed competitive with the FD method when 
both use a semi-implicit time discretization. Contrary to the experience of C ~ l l e n , ~ , ~ ~ ~ ~ ’ ~  
there were no noise or stability problems and the model was integrated to 50 days without 
difficulty. 

The generalization of the above work to  a variable-resolution Cartesian mesh is given by 
Staniforth and Mit~he1l. l~ A method was given for approximating the elliptic boundary-value 
problems which is 4th order accurate on any uniform sub-domain. For the variable- 
coefficient Helmholtz problem, the conjugate-gradient method was employed to accelerate 
the convergence of the iterative procedure. It was shown how to exploit the separability of 
the basis to efficiently solve equations involving the mass matrix (c.f. (7)). The scheme is 
optimal, taking O ( M N )  operations on a M x N  mesh compared with O(M2N)  for banded 
matrix solvers. It was shown how to evaluate product (non-linear) terms using a product- 
Simpson quadrature which is more efficient than the usual product-Gaussian rule, both 
integration rules being exact. The methods employed have the added advantage of being 
particularly economical for storage. A series of experiments was performed using several 
mesh configurations, each having uniform high resolution over a specified area of interest 
and lower resolution elsewhere, to produce short-term forecasts over the high-resolution 
subdomain without the necessity of high-resolution everywhere. It was found that the 
forecast produced on a uniform high-resolution mesh can be essentially reproduced for a 
limited time over the specified area of interest by a variable-mesh configuration at a fraction 
of the computational cost. Noise problems were avoided by smoothly varying the resolution 
away from this area. It was consequently concluded that this was a viable strategy for the 
limited-area/-time numerical weather prediction problem. 

Ritchie” numerically integrated the non-divergent barotropic vorticity equation on a 
semi-infinite ‘P-plane’ to investigate a resonance mechanism for Rossby waves on a shear 
flow in the presence of a non-linear critical layer. The model employed a Fourier expansion 
in the periodic (x-) direction and linear FEs in the semi-infinite y-direction; the time- 
discretization was leap-frog. A weak forcing was assumed at the (y = constant) boundary and 
the radiation condition of BCland and Warn16 was applied at  the open computational 
boundary (situated at a finite value of y), with the critical layer lying between these two 
boundaries. High uniform resolution was used in the y-direction within the critical layer in 
order to resolve the large local gradients, and the resolution was made to vary smoothly 
away from this layer to the coarsely-resolved outer region where the gradients are small. It 
was found that varying the resolution in this way gave results of equivalent accuracy to those 
of high resolution everywhere, but at half the computational cost. It was shown that a high 
amplitude response to a weak forcing can be found by suitably varying the parameters of the 
problem, suggesting that resonance is possible under certain circumstances. 

Navon” used an extrapolated Crank-Nicholson time scheme with uniform triangular 
elements to solve the shallow-water equations for a channel on a ‘P-plane’ (equations 
(9)-( 12)). He  experimented with a consistent mass matrix, a lumped mass matrix and a linear 
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combination of the two, and compared these with the results of other authors for the same 
problem. H e  concluded that there was a good correspondance between his results and those 
of Cullen' and a 4th order FD model for the same problem. It was found that better results 
were obtained using a mass matrix defined by the average of the consistent and lumped mass 
matrices than with either used separately. It was suggested that a judicious linear combina- 
tion of the two 2nd order accurate methods (consistent and lumped mass matrices) could 
result in cancellation of the 2nd order error contributions such as to give 4th order accuracy, 
and that this probably explains the superior performance of the averaged mass matrix. It is 
interesting to note that the use of bilinear rectangular elements for the same problem 
automatically gives 4th order accuracy without any modification to the mass matrix; further, 
contrary to linear triangular elements, any modification of the mass matrix in the latter case 
will serve to reduce the accuracy rather than increase it. Although he used an extrapolated 
Crank-Nicolson time scheme to increase the permissible time step, the gain in comparison 
with a leap-frog scheme seemed to be offset for the most part by the increased number of 
computations, and thus the semi-implicit time scheme is to be preferred. 

Sasaki and Reddy" examined the advection of a circular vortex in a periodic channel in 
the absence of rotation using the 2-D incompressible flow equations. They compared several 
combinations of space and time schemes using an exact analytical solution as a control. The 
FD schemes were based on Arakawa'sl' approximation to the Jacobian, whereas the FE 
schemes used bilinear rectangular elements. (We note in passing that Arakawa's scheme is 
equivalent to a mass-lumped FE scheme using bilinear square elements as pointed out by 
Jesperson.20) A vorticitylstream function formulation was also compared to that of velocity 
components. It was concluded that the best results were obtained for the bilinear FEs using 
vorticity/stream function in conjunction with a Crank-Nicolson time scheme, and that a 
variational enstrophy adjustment improved the long-time solutions. 

Haltiner and Williams4 formulated a FE model of the barotropic vorticity equation for 
periodic and contained flows using linear triangular elements in the manner of Fixz1 for an 
ocean model; no results were given. 

Schoenstadt*' examined the effect of using staggered and unstaggered meshes for the 
shallow-water equations in their primitive form. Equations (9)-( 11) (with 4 = gh) were 
linearized in a 1-D infinite region with no mean flow to give 

U, + gh, - fv = 0 
v ,+fu=O 

h, + HU, = 0 

where H is the mean height and u, v and h are the perturbed velocities in the x and y 
direction and the perturbed free surface height, respectively, f is the Coriolis parameter and 
g is the acceleration due to gravity. He  showed that for both FD and FE formulations an 
unstaggered arrangement of variables propagates energy in the wrong direction for the 
smaller scales; this manifests itself in numerical integrations as small-scale noise. Williams23 
extended this work to include unstaggered FD and FE formulations where vorticity and 
divergence are used as predictive variables instead of velocity components. The linearized 
equations corresponding to (13)-(15) are then given by 

5, + fD = 0 

D, + ghxx -f5 = 0 
h , + H D = O  
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where = u, is the vorticity and D = u, is the divergence. An analysis of (16)-(18) for 
various unstaggered FD and FE formulations showed that such formulations do not suffer 
the same problems as the unstaggered arrangement formulated in terms of velocity compo- 
nents. The results of Schoenstadt22 and Williams23 are important since they explain the  noise 
problems of the models mentioned earlier in this section that use velocity components, and 
the absence of problems in the vorticity divergence formulations of Staniforth and Mitch- 
el17314 for the barotropic problem and of Staniforth and  dale^^^ and Cullen and for 
the baroclinic (3-D) problem. 

Williams and ZienkiewiczZ6 examined mixed-order elements (linear for velocity compo- 
nents, constant for free-surface height and vice-versa) on a staggered grid for the linearized 
I -D  shallow-water equations with a mean flow. An analysis similar to that of Schoenstadt2’ 
indicated that the results should be superior to an unstaggered formulation with linear 
elements and this was verified. The extensions to non-linear problems and 2-D were not 
tested and appear difficult. 

BAROCLINIC PRIMITIVE EQUATION MODELS 

Carson and C ~ l l e n ~ ~  compared forecasts made by various versions of an FD multilayer 
model with those made by a mixed FD/FE model, for two initial data sets for periods of up 
to 5 days. All models used a( = p / p s )  co-ordinates and FD’s in the vertical, and a leap-frog 
time scheme. The FD multi-layer model was solved over a global domain using 2nd order 
energy-conserving finite differences on a quasi-uniform rectangular grid. The mixed FD/FE 
model was solved over a hemispherical domain using linear triangular elements in the 
horizontal in the manner of Cullen9 for a barotropic model. It was concluded that the 
forecasts from the mixed FD/FE model were reasonably competitive with those of the other 
models when verified against real data, but the use of triangles on an icosahedral mesh 
generated spurious ridging associated with the icosahedral boundaries. 

Results from the above mixed FD/FE model for three-day forecasts from an initial data 
set as well as general circulation simulations were compared in Cullen and Hallz5 with those 
from a mixed FD/FE model using stream function and velocity potential as dependent 
variables rather than velocity components. The use of a stream-function/velocity potential 
(or equivalently, vorticity/divergence) formulation enabled this latter model to employ a 
semi-implicit time discretization. Comparisons were also made with a spectral and FD 
model. It was concluded that results from the stream-function/velocity potential version of 
the mixed FD/FE model was superior to those of the velocity-component version; this result 
can be explained by the later work of Schoenstadt2* and William~.’~ It was also found that 
results from the spectral model were generally as good as those from the stream- 
functionlvelocity potential version of the mixed FD/FE model and the results of both were 
generally superior to those of the other comparison models. 

A finite-element formulation for the vertical discretization of sigma-co-ordinate primitive- 
equation models was given by Staniforth and Daley.28 The formulation is independent of the 
particular choice of horizontal discretization and was tested using a spectral (spherical 
harmonic) representation in the horizontal and a semi-implicit time discretization. The need 
to explicitly integrate the hydrostatic equation at each timestep was removed by differentiat- 
ing the prognostic equation for divergence with respect to a and using the hydrostatic 
equation to re-express the (only) term involving the geopotential height in terms of the 
temperature. A sample 36 h forecast using real data of this fully Galerkin model was given to 
demonstrate the viability of the method.  dale^^^ used the normal modes of this model to 
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develop a procedure for initializing the data of the model, and all but eliminated the 
unimportant gravity modes while retaining almost unaltered the Rossby modes. The above 
model has also been used by Daley3’ to examine under what conditions the interaction 
between geostrophic and ageostrophic modes is a significant feature of predictability decay in 
deterministic forecast models. 

Staniforth and DaleyZ4 combined the above FE formulation of the vertical discretization 
with the horizontal FE discretization of Staniforth and Mitchell,14 to produce an efficient 
fully FE model using the baroclinic primitive equations. The model has a semi-implicit time 
scheme and the variable horizontal resolution gives 4th order accurate, noise-free 24 h 
forecasts for the higher-resolution area of interest situated over N. America. These forecasts 
are accurate until the coarser outside resolution contaminates the high-resolution inner 
region of interest, and permit more detailed forecasts in a real-time environment at the 
expense of a shorter forecast period when compared to models having uniform (but lower) 
resolution everywhere. Verification scores against analysed observations of both 24 h and 48 h 
forecasts of this model (54 in all) with those of an operational spectral model were given by 
Benoit et aL31 and it was concluded that the variable-resolution FE model was a competitive 
real-time forecast model for periods of at least 48 h. 

MacPherson et aL3’ formulated a 3-D primitive equations model in isentropic co-ordinates 
to model frontogenesis, using bilinear FEs on a rectangular mesh in the horizontal and FDs 
in the vertical. They compared integrations of this model using two different sets of initial 
~ o n d i t i o n s ~ ~ , ~ ~  with those of an FD model having approximately twice the resolution, and 
concluded those of the FE model were superior. However, comparisons of these results with 
those of William~’~ and Hoskins and B r e t h e r t ~ n ~ ~  were not as encouraging. Possible reasons 
for this include inadequate resolution, difficulty in imposing boundary conditions and the 
choice of vertical co-ordinate. 

The results of K o c l a ~ ~ ~  using a 2-D(x-z) FE model for the above problem using the same 
initial conditions are more convincing. He  also used bilinear rectangular elements but 
employed horizontal mesh-lengths more in keeping with the scales of the physical problem 
being examined (horizontal mesh-lengths as small as 10 km were used as compared to those 
of 1000 km of MacPherson et aE.32). Results of various integrations were compared with 
those of Hoskins and B r e t h e r t ~ n ~ ~  and Williams33 with good agreement; in particular, 
K o ~ l a s ~ ~  obtained slightly steeper gradients across the front at equivalent times than did 
Williams.33 The advantage of using variable resolution (high resolution surrounding the 
front, varying smoothly away from the front) was well demonstrated. Using this approach, 
results of equivalent quality to those of uniform high-resolution everywhere were produced 
at half the computational cost. 

ATMOSPHERIC BOUNDARY-LAYER AND POLLUTION MODELS 

Gresho et a1.36 compared results from various linear and quadratic FE approximations to the 
l - D  and 2-D advection diffusion equation with those from 2nd and 4th order FD schemes. 
Their paper is a revised version of that presented in June 1976 at the 2nd International 
Symposium on FE Methods held in Rappallo, Italy. For pure advection in l-D they 
concluded that the FE schemes were superior to the FD schemes and that mass lumping 
seriously reduces accuracy. It was also shown that whereas both quadratic FEs and linear 
FEs give a 4th order accurate physical mode (the linear elements are a little less accurate, 
especially for the smallest scales), the quadratic elements give rise to a spurious mode which 
moves approximately five times as fast as the physical mode and in the wrong direction. In a 
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linear problem this behaviour will not cause any problems provided very little of the initial 
data is projected on the spurious mode. However, in a non-linear problem the modes are no 
longer linearly independent and this may cause difficulties. A further drawback to quadratic 
FEs when compared to linear FEs for this problem is the additional computation time 
required by the increased band width of the FE matrices. Results of calculations for pure 
advection in 2-D and for the 2-D transport of a pollutant by the advection-diffusion 
equation were also reported. The dangers of mass-lumping were again highlighted. 

A 1-D atmospheric boundary-layer (ABL) model of moist, deep convection using linear 
FEs was formulated and tested by man tor^.^' The model predicted the first moments of the 
dependent variables; closure was achieved by making the covariances of the dependent 
variables proportional to an eddy diff usivity which depends on the turbulent kinetic energy 
and a characteristic turbulence time-scale. Results were given for a model problem where 
condensation, diffusion and shear were included, but Coriolis forces and subsistence were 
neglected. Experiments were conducted to examine the sensitivity of the results to changes in 
the variable vertical resolution, timestep, the order of the numerical quadrature and the 
number of iterations used in the solution procedure; the solutions appeared to have 
converged and to be physically reasonable for the model problem. 

Long et a1.38 formulated an ABL model suitable for real-time forecasting of boundary- 
layer values of wind, temperature and humidity for periods of up to 24 h. Obukhov similarity 
theory was used for the surface layer and K-theory for the turbulent transfer in the transition 
layer, while the upper boundary conditions were provided by a prior integration of a 
large-scale primitive equation model. Numerically, the model used a time-splitting tech- 
nique, an F D  method for vertical diffusion and linear FEs for horizontal advection. A 35 x 30 
horizontal mesh (mesh-length of 80 km) with 10 vertical levels was used but no forecasts 
were given. 

Pepper et ~ 1 . ~ ~  used similar methods to model the dispersion of atmospheric pollution 
using the 3-D advection-diffusion equation 

4t + V .  V 4  = V .  (KV4) (19) 
where V denotes the variable advection wind field, K the eddy diffusivity and 4 the 
concentration. The formulation used similarity- and K-theory to give a cubic profile for the 
vertical diffusivity and the model was designed to use analysed observations from 7 
meteorological towers as initial data. Results using analytically specified initial data for the 
passive advection of a scalar compared favourably with those of a cubic-spline model at 
equivalent resolution; no results were given when diffusion was included. 

Chan et aL4' formulated two FE models to simulate the spread and dispersion of liquified 
natural gas (LNG). Both models used the time-dependent, 2-D (x-z), non-divergent conser- 
vation equations for mass, momentum and energy and a constant eddy viscosity. One of the 
models further made the hydrostatic assumption by neglecting the convective motion, inertia, 
and shear forces in the vertical. Bilinear elements were used for all variables with the 
exception of the use of constant elements for pressure in the non-hydrostatic model; implicit 
time-marching schemes were employed. It was concluded from integrations over a 15 x 24 
variable-resolution mesh that both models gave realistic simulations for large diffusivities, 
but the hydrostatic version was inadequate for several cases of interest. The hydrostatic 
version also gave somewhat noisy results; this is perhaps not surprising since the use of the 
hydrostatic assumption as well as the incompressibility assumption probably overconstrains 
the problem. 

The above hydrostatic model has been further developed by Takle et aL4l and Chang et 
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al.42 They used a more sophisticated parameterization of turbulence as well as higher-order 
elements. Takle et aL4l compared results from a 1-D version of the model with other authors 
and concluded the model gave realistic, accurate simulations. Chang et ~ 1 . 4 ~  discussed 
preliminary results for the simulation of the sea-breeze. 

Chan et al.43 formulated a 3-D FE model for the spread and dispersion of LNG using a 
modified form of the anelastic equations, and turbulence was parametrized by bulk formulae. 
Trilinear elements were used for velocity components whereas constant elements were used 
for pressure. Forward time differences were employed, which is potentially dangerous, since 
in the absence of diffusion the scheme is numerically unstable. They argued that mass 
lumping was justifiable on the grounds of cost-effectiveness, even though it degrades 
accuracy. Results of a simulation by this model of a LNG spill at China Lake, California are 
given by Chan et al.;44 they appear to be physically reasonable. 

An interesting framework for examining the conservation properties of FE formulations of 
the Boussinesq equations is given by Lee et ~ 1 . ~ '  They showed how to numerically conserve 
certain physically conserved quantities in a selective manner by appropriately adding terms 
to the equations of the form cFV.V, where c is a constant, V is the 2-D velocity vector and 
F is one of the dependent variables of the problem. These terms are zero analytically, but 
numerically of the order of the truncation error, and render the numerical formulation of the 
problem less 'stiff'. Cliffe46 corrected an algebraic error in their analysis and in a similar 
manner to Lee et observed that by a suitable choice of parameters one could conserve 
one of mean temperature ( T ) ,  mean squared temperature (T2)  and energy ( E ) ;  with one 
particular choice it was possible to conserve both T and E for a general choice of elements, 
but not T2.  However, he observed that if one wishes to conserve all three quantities 
(T, T2 ,  E ) ,  then it is necessary to use mixed-order interpolation. It was further noted that the 
element space for pressure elements should not be made too large, otherwise spurious 
(computational) pressure modes are created.47 It appears therefore that one should choose 
the smallest such space to avoid generating computational modes. The above ideas can be 
used to examine the baroclinic primitive equations by adding weighted multiples of the 
vertically integrated continuity equation to the governing equations. 

Mailhot and Benoit4' formulated a 1-D ABL suitable for numerical weather prediction 
models using linear FEs and a Crank-Nicolson time scheme. Their formulation is somewhat 
similar to that of M a n t ~ n ~ ~  except that a characteristic length scale instead of a characteristic 
time scale was used in the eddy diff usivity and they further neglected vertical density 
variations. They compared their results with other authors and real data and achieved 
realistic results at much lower resolution than previous studies. They concluded that this 
should enable the scheme to be used for real-time applications in 3-D. 

CONCLUSION 

The analyses of C ~ l l e n ~ ? ' ~  and Cullen and Morton13 give 4th-order error estimates for linear 
elements on uniform 1-D meshes. This result carries over to 2-D and 3-D for bilinear 
rectangular and trilinear brick elements, and the accuracy has been verified practi- 
cally.6~7~'3,14~1s~24,39 Given the accuracy, computational efficien~y'?'~ and simplicity of these 
elements, it is usually not cost-effective to use higher-order elements for problems that can 
be mapped (e.g. by a co-ordinate transformation) to a regular Cartesian mesh. For such 
problems (and many of the above-discussed problems fall into this category) it is usually less 
accurate and more costly, for example, to use parabolic elements than linear elements. As 
indicated by Sani et a1.,47 higher-order elements can also generate computational modes 
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(unrelated to the physical solution) and consequently accuracy and stability problems for 
non-linear time-dependent flows; the imposition of boundary conditions is also more 
delicate. The increased flexibility of variable resolution for linear, bilinear and trilinear 
elements when compared to FDs has been found useful by several authors.14~24~28332~35,37~40~48 

The above, unfortunately, is not the whole story; one must never lose sight of the 
properties of the underlying governing equations. This is clearly demonstrated by the work 
of Schoenstadt” and Williamsz3 where two different formulations (both using linear elements 
for all variables) of the same problem give significant differences for the accuracy and 
stability of the short space-scales. It may therefore be necessary to use mixed-order 
interpolation, or staggering, or a reformulation of the dependent variables of the problem for 
best results. The approaches of Schoenstadt” and Williamsz3 and Lee et aL4’ and Cliffe46 are 
valuable tools in this regard. Further work in this area, particularly for the vertical 
formulation of baroclinic primitive equation and Boussinesq models, should shed some more 
light on the subject. 

For problems with truly irregular geometry it appears that there is no choice but to accept 
the increased computational cost of irregular triangular meshes as the price to be paid for 
accurate simulations. The increase in computational cost of elements defined on an arbitrary 
triangulation of a domain is for the most part associated with the solution of algebraic 
equations of the form (7) involving the mass matrix; the reason is that one can no longer 
solve such problems as efficiently as for rectangular elements on a regular Cartesian mesh. 

Although there are some outstanding computational questions, the application of the FE 
method to meteorological flows has now passed from the stage of demonstrating its viability 
to exploiting the models to further understand and predict meteorological phenomena and 
the future appears promising. 
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